
International Master of Computer Science

E5 Internship Report

LLVM/Clang integration into Buildroot

Valent́ın Korenblit

Tutor
Romain Naour

Supervisor
Dr. Yasmina Abdeddäım

9th July, 2018

Acknowledgements

I would like to thank my tutor, Romain Naour, for his continuous guidance and feedback
throughout this project. It would not have been possible without his help and expertise.
I would also like to thank Smile for trusting and supporting me since the beginning of my
internship.

Another person who made this possible is my supervisor, Yasmina Abdeddäım. She
has encouraged me and offered me a listening ear at all times, which gave me the strength
to continue when I was about to give up.

Additionally, I want to thank the Buildroot community for taking the time to review
my contributions and give me the necessary feedback to make the project go in the right
direction.

Finally, I want to thank my parents and sister. They know how hard it is for me to
be so far from them but they continue to bring me their support and motivation everyday
despite the distance.

Contents

1 Introduction 4
1.1 Organization . 4

2 Smile 5
2.1 Organizational structure . 5
2.2 Open Source School . 5

3 Buildroot 6
3.1 Cross-compilation toolchain . 6
3.2 Packages . 7
3.3 Contributing to the project . 7

4 LLVM 8
4.1 The project . 8
4.2 Internal aspects . 9

4.2.1 Frontend . 9
4.2.2 LLVM IR . 9
4.2.3 Optimizer . 10
4.2.4 Backend . 11
4.2.5 Retargetability . 11

4.3 Clang . 12

5 Linux graphics stack 13
5.1 X Server . 13
5.2 The DRI/DRM infrastructure . 13
5.3 Mesa 3D . 14

6 LLVM/Clang integration to Buildroot 15

7 Conclusions and future work 45

2

Acronyms

ABI Application Binary Interface

API Application Program Interface

AVX Advanced Vector Extensions

DMA Direct Memory Access

ELF Executable and Linkable Format

GCC GNU Compiler Collection

GCN Graphics Core Next

GLSL OpenGL Shading Language

JIT Just in Time

RISC Reduced Instruction Set Computer

SSA Static Single Assignment

VC4 VideoCore IV

WIP Work in Progress

3

1 Introduction

Embedded systems are present in many kinds of devices, ranging from aircraft systems
to consumer electronics. Thanks to the technological advances, some recent embedded
sytems outperform desktop PCs of several years ago, allowing them to run a Linux sys-
tem. However, while regular Linux distributions are generic and well suited for desktop
systems, embedded systems present different kinds of hardware/software constraints that
need to be satisfied, which normaly involves applying modifications to the operating sys-
tem. Because of this, there exist build sytems like Buildroot that can generate a fully
customized embedded Linux system optimized for a particular target hardware.

Two aspects that can be customized using Buildroot are the packages that will be in-
stalled on the target system and the cross-compilation toolchain that is used to build
them. LLVM as a compiler infrastructure can play both roles in Buildroot: one one hand,
it can be seen as a target package which provides functionalitites such as code optimiza-
tion and Just In Time compilation to other packages, whereas on the other hand it opens
the possibility of creating a cross-compilation toolchain that could be an alternative to
Buildroot’s default one, which is based on GNU tools.

This project is mainly focused on LLVM as a target package. Nevertheless, it also discusses
some relevant aspects which need to be considered when building an LLVM/Clang-based
cross-compilation toolchain.

1.1 Organization

This document is organized in a way that the technologies involved in the project are first
introduced in order to provide the reader with the necessary information to understand
the main objectives of it and interpret how software components interact with each other.

Section 3 discusses the most important aspects of Buildroot in order to provide some
background information. Section 4 introduces the LLVM project from the user’s point of
view and then digs into its internal aspects to show how its unique design presents several
advantages over GCC. As the first goal of this project is providing LLVM support for
OpenGL, Section 5 discusses the Linux Graphics Stack to see which is the role of LLVM
in this complex system. Section 6 contains the development of all the project itself, doing
emphasis in all the problems encountered along the way. As this work was done in several
iterations, this section shows the state of progress at different dates, which gives a clear
view of how the project evolved and which functionalities were added on each iteration.
Finally, Section 7 discusses possible future work and concludes the document.

4

2 Smile

Smile is a French company specialized in the integration of open source solutions. Created
in 1991, it has 15 agencies in 7 countries: France, Switzerland, Netherlands, Belgium,
Luxembourg, Morocco and Ukraine. It offers consulting services in design, development
and integration of open source solutions but also provides training sessions, technical
support and hosting services. The main offers are grouped into the following categories:

• Digital

• Business Apps

• Embedded & IoT

• Outsourcing

2.1 Organizational structure

Smile is organized into autonomous entities called Business Units (BU), some offering
products and services which target a specific market segment and some others that work
internally for the company. Some examples of BUs are: Embedded and Connected Sys-
tems (ECS), Digital, Sales Outsourcing, Hosting, E-commerce and Recruiting, among
others.

2.2 Open Source School

In February 2016, Smile launched the Open Source School (OSS) in partnership with
EPSI, an engineering school. This is the first higher education school dedicated to open
source technologies which offers a 3-year program (BAC+5) to train professionals to
design, build and manage large open source projects.

5

3 Buildroot

Buildroot is an open source build system that allows to build from source some or all of
the following components of an Embedded Linux System:

• Cross-compilation toolchain

• Root filesystem

• Bootloader

• Kernel image

It is based on GNU Make and Kconfig, aiming to provide the user with a tool that gener-
ates a fully customizable Linux system, easily and in a few minutes. Currently, Buildroot
supports many architectures, such as x86, ARM, AArch64, MIPS, PowerPC and Microb-
laze among others. There are more than 2200 packages available and the documentation
explains in detail the process to add new ones.

Fig.1 shows the how the system can be configured by using make menuconfig:

Figure 1: Buildroot

3.1 Cross-compilation toolchain

A toolchain is the set of tools that allows to compile source code into executables that can
run on a target platform. A standard GNU toolchain consists of four main components:

• Binutils: set of binary utilities such as ld, as, objdump, readelf, etc.

• GNU Compiler Collection (GCC)

• C library: an API that allows user-space applications to interact with the Linux
kernel

• Linux kernel headers: they contain definitions and constants needed to access the
kernel directly

6

Buildroot uses cross-compilation, which means that the build environment is separated
from the target environment. This approach has many benefits considering that the
embedded target is generally slower than the host and sometimes it cannot even run a
compiler. The main advantages are the following:

• Increasing productivity (host is faster than target)

• Build an application or a complete system for many platforms on the same machine

• Bootstraping a compiler on a new architecture

Buildroot offers the possibility of building an entire cross-toolchain from source or using
a pre-compiled one. When choosing the first option, it is possible to customize every
component of the toolchain: the C library (glibc, uclibc or musl), the version of GCC,
binutils, kernel headers, and many other options.

3.2 Packages

Packages in Buildroot are stored in the package directory. Every package consists of at
least three files:

• Config.in: contains the Kconfig code necessary to display the package and its options
in the configuration tool. It is important to specify all the dependencies in this file.

• .mk file: a Makefile containing the instructions involved since the source code of the
package is downloaded until it is finally installed to the target.

• .hash file: a file containing the hashes of the files downloaded by the package, such
as its tarball and the license file.

• Optionally, it is possible to store patches which are applied before configuring the
package.

As packages are based on different build systems, Buildroot offers several infrastructures
to facilitate the integration of new packages. Among them, there are infrastructures for
CMake, Autotools and Python-based packages. A generic package intrastructure is also
available for packages not using any of the more common build systems.

3.3 Contributing to the project

There are four stable releases of Buildroot every year: in February, May, August and
November. Each release has a tag with the following format: <year>.<month>, being
2018.05 the latest release at the time of writing this document. There is one long term
support release every year, <year>.02, maintained during one year with security, bug and
build fixes.

It is possible to contribute to the project by reviewing, testing and sending patches.
After a patch is sent, it is discussed with the people on the mailing list, which will gen-
erally lead to doing some modifications. Finally, if the project maintainers consider that
the patch is ready to be applied, it is commited to its corresponding branch.

7

4 LLVM

This section presents LLVM, an open source project that provides a set of low level
toolchain components (assemblers, compilers, debuggers, etc.) which are designed to be
compatible with existing tools typically used on Unix systems. While LLVM provides
some unique capabilities and is known for some of its tools, such as the Clang compiler
(C/C++/Objective-C compiler which provides a number of benefits with respect to the
GCC compiler), the main thing that distinguishes LLVM from other compilers is its
internal architecture.

4.1 The project

The LLVM (used to be an acronym of Low Level Virtual Machine but not anymore)
project started in the year 2000 as a result of a masters thesis 1 written by Chris Lat-
tner at the University of Illinois. This project is different from most traditional compiler
projects (such as GCC) because it is not just a collection of individual programs, but
rather a collection of libraries that can be used to build compilers, optimizers, JIT code
generators and other compiler-related programs. LLVM is an umbrella project, which
means that it has several subprojects, such as LLVM Core (main libraries), Clang, lldb,
compiler-rt, libclc, and lld among others.

From the start, LLVM was conceived as an API which provides a compiler infrastruc-
ture written in C++, focusing on compile time and performance of the generated code.
Thanks to this object-oriented design combined with a complete documentation, it is easy
to integrate LLVM components into third-party projects, and this is in fact the key of the
success achieved by this project.

Nowadays, LLVM is being used as a base platform to enable the implementation of stati-
cally and runtime compiled programming languages, such as C/C++, Java, Kotlin, Rust
and Swift. This is possible because LLVM’s internal structure implements many of the
common structures and patterns found in most programming languages, allowing devel-
opers to focus only on the particular aspects.

Many big companies are using LLVM technology in their products, being Apple and
Google the main supporters of the project. Below there are some examples:

• Apple:

– All operating systems built with Clang

– Xcode IDE uses Clang compiler and static analyzer by default

– Swift uses LLVM as its compiler framework

• Google:

– Builds Android user space and Chrome for all platforms with Clang

– Android Renderscript compiler is based on LLVM

– Kotlin programming language compiles directly to native code via LLVM

1https://llvm.org/pubs/2002-12-LattnerMSThesis.html

8

However, LLVM is not only being used as a traditional C/C++ toolchain but is gaining
popularity in graphics. Such is the case of:

• llvmpipe (software rasterizer)

• CUDA (NVIDIA Compiler SDK based on LLVM)

• AMDGPU open source drivers

• Most of OpenCL implementations are based on Clang/LLVM

4.2 Internal aspects

Modern compiler design normally follows a three-phase approach, where the main com-
ponents are: the frontend, the optimizer and the backend. Each phase is responsible
for translating the input program into a different representation, making it closer to the
target language. LLVM follows this approach and provides the optimizer and some back-
ends, while frontends such as Clang live in separate projects. This sections describes each
of these 3 components and highlights the main advantages of working with this model,
focusing on LLVM IR (Intermediate Representation).

Figure 2: Three-phase compiler

4.2.1 Frontend

The frontend is the component in charge of validating the input source code, checking
and diagnosing errors, and translating it in from its original language (eg. C/C++)
to an intermediate representation (LLVM IR in this case) by doing lexical, syntactical
and semantic analysis. Apart from doing the translation, the frontend can also perform
optimizations that are language-specific.

4.2.2 LLVM IR

The LLVM IR is a complete virtual instruction set used throughout all phases of the
LLVM compilation strategy, and has the main following characteristics:

• Mostly architecture-independent instruction set (RISC)

• Strongly typed

– Single value types (eg. i8, i32, double)

– Pointer types (eg. *i8, *i32)

– Array types, structure types, function types, etc.

• Unlimited number of virtual registers in Static Single Assignment (SSA)

• Memory partitioned into global area, stack and heap

• Most operations are in three-address form

9

Intermediate Representation is the core of LLVM. It is fearly readable, as it was designed
in a way that is easy for the frontends to generate but expressive enough to allow effective
optimizations that produce fast code for real targets. This intermediate representation
exists in three forms: a textual human-readable assembly format (.ll), an in-memory data
structure and an on-disk binary ”bitcode format” (.bc). LLVM provides tools to convert
from from textual format to bitcode (llvm-as) and viceversa (llvm-dis). Below is an ex-
ample of how LLVM IR looks like:

int sum(int a, int b)

{

return a+b;

}

int main()

{

sum (1,2);

return 0;

}

Listing 1: C example

; ModuleID=’main.c’

source_filename="main.c"

target datalayout="e-m:e-i64:64-f80:128-n8 :16:32:64 - S128"

target triple="x86_64 -buildroot -linux -gnu"

; Function Attrs: noinline nounwind optnone uwtable

define i32 @sum(i32 , i32) #0 {

%3 = alloca i32 , align 4

%4 = alloca i32 , align 4

store i32 %0, i32* %3, align 4

store i32 %1, i32* %4, align 4

%5 = load i32 , i32* %3, align 4

%6 = load i32 , i32* %4, align 4

%7 = add nsw i32 %5, %6

ret i32 %7

}

; Function Attrs: noinline nounwind optnone uwtable

define i32 @main() #0 {

%1 = alloca i32 , align 4

store i32 0, i32* %1, align 4

%2 = call i32 @sum(i32 1, i32 2)

ret i32 0

}

Listing 2: Equivalent code in LLVM IR

4.2.3 Optimizer

The strategy proposed by LLVM is designed to achieve high performance executables
through a system of continuous optimization. Because all of the LLVM optimizations are
modular (called passes), it is possible to use all of them or only a subset. There are Anal-
ysis Passes and Transformation Passes. The first ones compute some information about
some IR unit (modules, functions, blocks, instructions) without mutating it and produce
a result which can be queried by other passes. On the other hand, a Transformation Pass
transforms a unit of IR in some way, leading to a more efficient code (also in IR). It must
be noted that a transformation pass may depend on a previous analysis pass but it cannot
depend on other transformation passes.

In general, the two main objectives of the optimization phase are improving the exe-
cution time of the program and reducing its code size. Every LLVM pass has a specific
objective, such dead code elimination, constant propagation, combination of redundant
instructions, dead argument elimination, and many others. The fact of using SSA form
guarantees that each variable is defined only once, which helps a lot when performing this
kind of optimizations.

10

The tool provided by LLVM to perform optimizations is called opt. It is possible to
see all possible optimizations by executing opt --help:

-assumption -cache -tracker - Assumption Cache Tracker

-atomic -expand - Expand Atomic instructions

-barrier - A No -Op Barrier Pass

-basicaa - Basic Alias Analysis (stateless AA impl)

-basiccg - CallGraph Construction

-bdce - Bit -Tracking Dead Code Elimination

-block -freq - Block Frequency Analysis

-bounds -checking - Run -time bounds checking

-branch -prob - Branch Probability Analysis

...

4.2.4 Backend

This component, also known as code generator, is responsible for translating a program
in LLVM IR into optimized target-specific assembly. The main tasks carried out by the
backend are register allocation, instruction selection and instruction scheduling.

Instruction selection is the process of translating LLVM IR operations into instructions
available on the target architecture, taking advantage of specific hardware features that
can lead to more efficient code. Register allocation involves mapping variables stored in
the IR virtual registers onto real registers available in the target architecture, taking into
consideration the calling convention defined in the ABI. Once these tasks and others such
as memory allocation and instruction ordering are performed, the backend is ready to
emit the corresponding assembly code, generating either a text file or an ELF object file
as output.

4.2.5 Retargetability

The main advantage of the three-phase model adopted by LLVM is the possibility of
reusing components, as the optimizer always works with LLVM IR. This eases the task of
supporting new languages, as new frontends which generate LLVM IR can be developed
while reusing the optimizer and backend. On the other hand, it is possible to bring
support for more target architectures by writing a backend and reusing the frontend and
the optimizer.

Figure 3: Retargetability

11

4.3 Clang

Clang is an open source compiler frontend for C/C++, Objective-C and OpenCL C for
LLVM, therefore it can use LLVM’s optimizer to produce efficient code. Since the start
of its development in 2005, Clang has been focused on providing expressive diagnostics
and an easy IDE integration. As LLVM, it is written in C++ and has a library-based
architecture, which allows, for example, IDEs to use its parser to help developers with
autocompletion and refactoring.

Clang was designed to offer GCC compatibility, so it accepts most GCC’s command
line arguments to specify the compiler options. However, GCC offers a lot of extensions
to the standard language while Clang’s purpose is being standard-compliant. Because
of this, Clang cannot be a replacement for GCC when compiling projects that depend
on GCC extensions, as is the case with Linux kernel. In this case, Linux does not build
because Clang does not accept the following kinds of constructs:

• Variable length arrays inside structures

• Nested Functions

• Explicit register variables

Furthermore, Linux kernel still depends on GNU assembler and linker.

An interesting feature of Clang is that, as opposed to GCC, it can compile for multi-
ple targets from the same binary, that is, it is a cross-compiler itself. Clang binary works
as a driver, which means that it calls multiple binaries to control every phase of the
compilation process, as shown in Fig.4:

Figure 4: Clang driver

To control the target for which the code will be generated, it is necessary to specify
the target triple in the command line by using the − − target =< triple > option. For
example, --target=armv7-linux-gnueabihf corresponds to the following system:

• Architecture: arm

• Sub-architecture: v7

• Vendor:unknown

• OS: linux

• Environment: GNU

12

5 Linux graphics stack

This section intends to give an introduction to the Linux graphics stack in order to explain
the role of LLVM inside this complex system comprised of many open source componentes
that interact with each other. Fig. 5 shows all the components involved when 2D and 3D
applications require rendering services from an AMD GPU:

Figure 5: Typical Linux open source graphics stack for AMD GPUs

5.1 X Server

X Server is a software system that provides 2D rendering services to allow applications
creating graphical user interfaces. It is based on a client-server architecture and exposes
its services such as managing windows, displays and input devices through two shared
libraries called Xlib and XCB. Given that X uses network client-server technology, it is
not efficient when handling 3D applications due to its latency. Because of this, there
exists a software system called Direct Rendering Infrastructure (DRI) which provides a
faster path between applications and graphics hardware.

5.2 The DRI/DRM infrastructure

The Direct Rendering Infrastructure is a subsystem that allows applications using X Server
to communicate with the graphics hardware directly. The most important component of
DRI is the Direct Rendering Manager, which is a kernel module that provides multiple
services:

• Initialization of GPU such as uploading firmwares or setting up DMA areas.

• Kernel Mode Setting(KMS): setting display resolution, colour depth and refresh
rate.

• Multiplexing access to rendering hardware among multiple user-space applications.

• Video memory management and security.

13

DRM exposes all its services to user-space applications through libdrm. As most of
these services are device-specific, there are different DRM drivers for each GPU, such
as libDRM-intel, libDRM-radeon, libDRM-amdgpu, libDRM-nouveau, etc. This library
is intended to be used by X Server Display Drivers (such as xserver-xorg-video-radeon,
xserver-xorg-video-nvidia, etc.) and Mesa 3D, which provides an open source implemen-
tation of the OpenGL specification.

5.3 Mesa 3D

OpenGL is a specification that describes an API for rendering 2D and 3D graphics by
exploiting the capabilities of the underlying hardware. Mesa 3D is a collection of open
source user-space graphics drivers that implement a translation layer between OpenGL
and the kernel-space graphics drivers and exposes the OpenGL API as libGL.so. Mesa
takes advantage of the DRI/DRM infrastructure to access the hardware directly and
output its graphics to a window allocated by the X server, which is done by GLX, an
extension that binds OpenGL to the X Window System.

Mesa provides multiple drivers for AMD, Nvidia and Intel GPUs and also provides some
software implementations of 3D rendering, useful for platforms that do not have a dedi-
cated GPU. Mesa drivers are divided in two groups: Messa Classics and Gallium 3D. The
second group is a set of utilities and common code that is shared by multiple drivers, such
as nouveau (Nvidia), RadeonSI (AMD GCN) and softpipe (CPU).

As shown in Fig.6, LLVM is used by llvmpipe and RadeonSI, but it can optionally be used
by r600g if OpenCL support is needed. The llvmpipe is a multithreaded software ras-
terizer uses LLVM to do JIT compilation of GLSL shaders. Shaders, point/line/triangle
rasterization and vertex processing are implemented in LLVM IR, which is then translated
to machine code. Another much more optimized software rasterizer is OpenSWR, which
is developed by Intel and targets x86 64 processors with AVX or AVX2 capabilities. Both
llvmpipe and OpenSWR present a much faster alternative to the classic Mesa’s single-
threaded softpipe.

Figure 6: Mesa 3D drivers

14

6 LLVM/Clang integration to Buildroot

The main purpose of this internship is to integrate LLVM/Clang packages to Buildroot.
These packages will activate new functionalities such as enabling Mesa 3D’s llvmpipe
software rasterizer (useful for systems which do not have a dedicated GPU) and providing
OpenCL support for packages which are already available in Buildroot. Once LLVM is
present on the system, new packages that rely on this infrastructure can be added. When
this part of the project is achieved, a next step would be creating a cross-compilation
toolchain based on Clang to compile Buildroot components supported by this front-end.2

State of the project - 2 March 2018

After some research concerning the state of the art of the LLVM project, the objectives
of the internship were presented and discussed at the Buildroot Developers Meeting in
Brussels3, obtaining the following conclusions:

• LLVM itself is very useful for other packages (Mesa 3D’s llvmpipe or OpenJDK’s
Jit compiler).

• It is questionable whether there is a need for Clang in Buildroot, as GCC is still
needed and it has mostly caught up with Clang regarding performance, diagnostics
and static analysis. It would be possible to build a complete userspace but some
packages may break.

• LLVM does not have a stable API between major releases, so only these releases
can be used.

• It could be useful to have a host-clang package that is user selectable.

• The long-term goal is to have a complete clang-based toolchain.

The first patch series aims only to activate LLVM support for Mesa 3D, and is divided
into the following 3 patches:

• package/llvm: new host package

• package/llvm: enable target variant

• package/mesa3d: enable llvm support

It must be considered that with respect to the RFC series, 4 AMDGPU target support
was removed and it will be added once it can be tested. Currently, the supported targets
are x86, ARM and AArch64, and llvm.mk ensures that only the necessary target backends
are built.

2Mainline Linux kernel and glibc do not yet compile with Clang
3https://elinux.org/Buildroot:DeveloperDaysFOSDEM2018
4http://lists.busybox.net/pipermail/buildroot/2017-July/196163.html

15

Considerations

LLVM Makefile

In order to cross-compile LLVM for the target, llvm-config and llvm-tblgen tools must
first be compiled for the host. In the first patch series, a minimal version of host-llvm con-
taining only these two tools is provided. To do this, most of the HOST LLVM CONF OPTS
are set to OFF. However, this does not avoid building LLVM libraries, which takes around
one hour on a recent machine. To avoid this and build only the necessary tools:
HOST LLVM MAKE OPTS = llvm-tblgen llvm-config

Things that need to be considered when cross-compiling LLVM:

• Path to host’s llvm-tblgen: -DLLVM TABLEGEN

• Specify that it is a cross-compilation: -DCMAKE CROSSCOMPILING

• Default target triple: -DLLVM DEFAULT TARGET TRIPLE

• Host triple (native code generation for the target): -DLLVM HOST TRIPLE

• Target architecture: -DLLVM TARGET ARCH

• Targets to build: -DLLVM TARGETS TO BUILD

The result of the compilation will be one shared library containing all LLVM libraries
called libLLVM.so, as -DLLVM BUILD LLVM DYLIB is set to ON.

One important step in the process is the fact of replacing llvm-config in STAGING DIR
by its host variant. This is because llvm-config compiled for the target cannot run on the
host, and this tool is needed to build applications that use LLVM libraries, as it prints
the compiler flags, linker flags and object libraries needed to link against LLVM.

Mesa 3D

Currently, Mesa 3D is statically linking against LLVM libraries. When setting the option
MESA3D CONF OPTS += --enable-llvm-shared-libs, the build fails because it
cannot find LLVM libraries. Apparently, the problem is that llvm-config placed in STAG-
ING DIR is not working properly, as it provides the following output to this commands:

• ./llvm-config --shared-mode
static

• ./llvm-config --link-shared
llvm-config: error: libLLVM-5.0.so is missing

• ./llvm-config --libnames
libLLVMLTO.a libLLVMPasses.a libLLVMObjCARCOpts.a...

Even if llvm-config returns the correct lib directory, it assumes it has to use LLVM static li-
braries, and as the configure script from Mesa 3D calls llvm-config --link-shared
--libs (in case --enable-shared-libs is activated) the build fails. Mesa’s config-
ure script clearly states that llvm-config may not give the correct output when LLVM is
built as a single shared library.

16

Achievements

At this date, Mesa 3D’s llvmpipe was successfully tested on the following systems:

• x86 64

• ARM

• AArch64

x86 64

The tests for x86 64 were done using an AMD A4-3300M microprocessor. The built system
uses a Linux kernel 4.9, X window system and works correctly with OpenGL. During this
test it was possible to appreciate the better performance provided by llvmpipe with respect
to softpipe.

Figure 7: OpenGL specs

Some benchmarks were run in order to compare llvmpipe against Mesa 3D’s classic
softpipe software rasterizer and also against the AMD Radeon HD6480. Table 1 shows
how much the LLVM code optimizer improves rendering performance:

Table 1: Results of GLMark2 and GLMark2-es2 benchmarks on x86 64

GLMark2 GLMark2-es2
Radeon HD6480 156 156

llvmpipe 47 52
softpipe 3 3

17

ARM

In order to test LLVM for ARM architecture, Raspberry Pi 2 and Raspberry Pi 3 devel-
opment boards were used. For the case of the Raspberry Pi 3, the 32-bit defconfig was
selected. Raspberry Pi only supports OpenGL ES, so only GLMark2-es2 could be tested.

Table 2: Raspberry Pi 2 and 3 Hardware Specifications

Board Family SoC CPU GPU
RPi 2 BCM2709 BCM2836 @ 900 MHz ARMv7 Cortex-A7 (Quad Core) VC4
RPi 3 BCM2710 BCM2837 @ 1.2 GHz ARMv8 Cortex-A53 (Quad Core) VC4

When trying to execute glmark2 the following errors are obtained:

Error: GLX version >= 1.3 is required

Error: Error: Couldn’t get GL visual config

Error: main: Could not initalize canvas

Table 3: Results of GLMark2-es2 for ARM

GLMark2-es2
RPi2 softpipe 0
RPi2 llvmpipe 0

RPi3 (32-bit) softpipe 0
RPi3 (32-bit) llvmpipe 11

Table 3 shows an improvement in rendering when LLVM is used, and also the higher
computing power of the Cortex-A53 microprocessor with respect to the Cortex-A7.

AArch64

Buildroot offers a defconfig to install a 64-bit system on the Raspberry Pi 3 (raspber-
rypi3 64 defconfig). There is a little improvement in rendering with respect to the 32-bit
version:

Table 4: Results of GLMark2-es2 for AArch64

GLMark2-es2
RPi3 (64-bit) softpipe 0
RPi3 (64-bit) llvmpipe 13

18

Considerations

• By default, the defconfigs for Raspberry Pi present in Buildroot have /dev man-
agement set to Dynamic using devtmps only. This must be changed to Dy-
namic using devtmps + eudev in order to allow Linux kernel to load modules
dyamically, such as the VC4 device driver.

• To load VC4 device driver, assuming that the /boot partition has the overlays/
directory with its dtbo files inside, the next options must be configured:

– Add cma=256M to cmdline.txt

– Set gpu mem/gpu mem 1024 to 256 in config.txt

– Add dtoverlay=vc4-kms-v3d to config.txt

These steps allow to load the VC4 driver correctly, however it is not yet working well
with X. When trying to execute any glx command, such as glxinfo or glxgears, it
returns the following error:

Error: couldn’t find RGB GLX visual or fbconfig

Possible causes:

• Mesa is not installing libglx.so in /usr/lib/xorg/modules/extensions/.

• Mesa 3D package in Buildroot states that a vanilla kernel 4.5+ must be used with
Gallium VC4 (defconfig uses kernel from raspberrypi’s Github). However, even in
this case or using Eric Anholt’s kernel5 the error persists.

Next steps

• Enable dynamic linking for Mesa 3D. This is important because when building
packages that link against LLVM libraries the same problem may arise.

• For Raspberry Pi:

– Activate glx.

– Activate OpenGL for VC4.

• Prepare next patch series:

– Provide an option to do a full installation of host-llvm.

– Activate OpenCL.

– Add Clang package (needs full host-llvm installed).

– Add support for more targets.

5https://github.com/anholt/mesa/wiki/VC4-complete-Raspbian-upgrade

19

Update - 9 March 2018

Full host-llvm

After having investigated why Mesa 3D was not able to link dynamically against li-
bLLVM.so, it was found that the bug in llvm-config presented in section Mesa 3D occurs
when the option LLVM LINK LLVM DYLIB is not enabled. The purpose of this option is
to generate a single shared library (libLLVM.so) and dynamically link LLVM tools with it.

A priori, as llvm-tblgen and llvm-config are the only necessary tools for the host (llvm-
tblgen to cross-compile LLVM for the target and llvm-config to provide linking options
to packages that link against LLVM libraries), it was decided to do a minimal host-llvm
installation. However, to get the correct output from llvm-config, it must be linked with
libLLVM.so (host-variant), so this library must also be built. Because of this, the first
approach changed and the first patch of the series (package/llvm: new host package) will
provide a full installation of LLVM (tools and libraries). This approach will avoid conflicts
for packages linking with LLVM libraries and will also facilitate the integration of Clang
front-end, which will be provided in a future patch series.

PATCH v3

The PATCH v3 series6 sent to the Buildroot mailing list on the 9th March contains the
following 6 commits:

• [PATCH v3 1/6] package/llvm: new host package

• [PATCH v3 2/6] package/llvm: enable target variant

• [PATCH v3 3/6] package/llvm: enable AMDGPU

• [PATCH v3 4/6] package/mesa3d: enable llvm support

• [PATCH v3 5/6] package/llvm: enable ARM

• [PATCH v3 6/6] package/llvm: enable AArch64

This series provides LLVM backends for x86, ARM, AArch64 and AMDGPU (R600 to
GCN). With respect to the previous version, host-llvm is entirely built because of the
reasons explained above.

6http://lists.busybox.net/pipermail/buildroot/2018-March/215490.html
20

Update - 29 March 2018

New series to enable OpenCL

Once LLVM was tested working on the three more common architectures (x86, ARM and
Aarch64), the next goal was activating OpenCL support. This task involved multiple
steps, as there are many dependencies which need to be satisfied.

OpenCL is an API enabling general purpose computing on GPUs (GPGPU) and other
devices (CPUs, DSPs, FPGAs, ASICs, etc.), being well suited for certain kinds of parallel
computations, such as hash cracking (SHA, MD5, etc.), image processing and simulations.

OpenCL presents itself as a library with a simple interface:

• Standarized API headers for C and C++

• The OpenCL library (libOpenCL.so), which is a collection of types and functions
which all conforming implementations must provide.

The standard is made to provide many OpenCL platforms on one system, where each
platform can see various devices. Each device has certain compute characteristics (num-
ber of compute units, optimal vector size, memory limits, etc). The OpenCL standard
allows to load OpenCL kernels which are pieces of C99-like code that is JIT-compiled by
the OpenCL implementations (most of them rely on LLVM to work), and execute these
kernels on the target hardware. Functions are provided to compile the kernels, load them,
transfer data back and forth from the target devices, etc.

There are multiple open source OpenCL implementations for Linux:

• Clover (Computing Language over Gallium)

It is a hardware independent OpenCL API implementation that works with Gallium
Drivers (hardware dependent userspace GPU drivers) which was merged into Mesa
3D in 2012. It currently supports OpenCL 1.1 and it is close to 1.2. It has the
following dependencies:

– libclang: provides an OpenCL C compiler frontend and generates LLVM IR.

– libLLVM: LLVM IR optimization passes and hardware dependent code gen-
eration.

– libclc: implementation of the OpenCL C standard library in LLVM IR bitcode
providing device builtin functions. It is linked at runtime.

• Pocl

This implementation is OpenCL 1.2 standard compliant and supports some 2.0
features. The major goal of this project is to improve performance portability
of OpenCL programs, reducing the need for target-dependent manual optimiza-
tions. Pocl currently supports many CPUs (x86, ARM, MIPS, PowerPC), AS-
PIs(TCE/TTA), NVIDIA GPUs via CUDA (experimental), HSA-supported GPUs
and multiple private off-tree targets. It also works with libclang and libLLVM but
it has its own Pocl Builtin Lib (instead of using libclc).

21

• Beignet

It targets Intel GPUs (HD and Iris) starting with Ivy Bridge, and offers OpenCL
2.0 support for Skylake, Kaby Lake and Apollo Lake.

• ROCm

This implementation by AMD targets ROCm (Radeon Open Compute) compat-
ible hardware7 (HPC/Hyperscale), providing OpenCL 1.2 API with OpenCL C 2.0.
It has become open source in May 2017.

Table 5: Open source OpenCL implementations

Project Version Hardware
Clover 1.1 AMD
Pocl 1.2 CPU, NVIDIA8, AMD9, TCE/TTA

Beignet 2.0 Intel
ROCm OpenCL 1.2 AMD10

Because of this fragmentation concerning OpenCL implementations (without taking
into account the propietary ones) there exists a program that allows multiple implemen-
tations to co-exist on the same sytem: OpenCL ICD (Installable Client Driver). It needs
the following components to work:

• libOpenCL.so (ICD loader): this library dispatches the OpenCL calls to OpenCL
implementations.

• /etc/OpenCL/vendors/*.icd: these files tell the ICD loader which OpenCL im-
plementations (ICDs) are installed on the sytem. Each file has a single line contain-
ing the name of the shared library with the implementation.

• One or more OpenCL implementations (the ICDs): the shared libraries
pointed by the .icd files.

7https://github.com/RadeonOpenCompute/ROCm
8Needs propietary drivers
9HSA compatible hardware

10ROCm compatible hardware
22

Preparation of the new series

Considering that the available system for tests has an AMD Radeon Dual Graphics GPU
(integrated HD6480G + dedicated HD7450M) and that Mesa 3D is already present in
Buildroot, it was decided to work with the OpenCL implementation provided by Clover.
The diagram in Fig.8 shows which are the necessary components to set up the desired
OpenCL environment and how they interact with each other.

Figure 8: Clover OpenCL implementation

Clang for host

The first step was providing Clang package for the host, as it is necessary to build libclc
because this library is written in OpenCL C and some functions are implemented directly
in LLVM IR. Clang will transform .cl and .ll source files into LLVM IR bitcode (.bc) by
calling llvm-as (the LLVM assembler).

Regarding the Makefile for building host-clang, the path to host’s llvm-config must be
specified. This is necessary because Clang is thought to be built as a tool inside LLVM’s
tree (LLVM SOURCE TREE/tools/clang) but Buildroot manages packages individually,
so Clang’s code source cannot be downloaded inside LLVM’s tree.

Having Clang installed on the host is not only useful for building libclc, it also pro-
vides an alternative to GCC, which enables the possibility of creating a new toolchain
based on it.

23

Clang for target

When trying to cross-compile Clang some problems were encountered, so it was decided
to work with ARM architecture in order to make sure that a build on x86 was successful
not just because of binary compatibility. The main issues were the following ones:

• llvm-tblgen

When trying to cross-compile Clang, the build broke with the following error:

llvm-tblgen: cannot execute binary file: Exec format error

This means that llvm-tblgen from STAGING DIR (cross-compiled) was trying to be
executed on the host machine. Because of this, it was necessary to copy llvm-tblgen
from host to STAGING DIR/usr/bin. This is the same kind of problem that arised
with llvm-config, which was explained before.

• llvm-config

It is necessary to specify the path to llvm-config installed in STAGING DIR:

-DLLVM CONFIG:FILEPATH=$(STAGING DIR)/usr/bin/llvm-config

• Shared libs

When Clang was built for the host, it generated multiple static libraries (libclan-
gAST.a, libclangFrontend.a, libclangLex.a, etc.) and finally a shared object (lib-
clang.so) containing all of them. However, when building for the target, it produced
multiple shared libraries and finally libclang.so. This resulted in the following error
when trying to use software that links against libOpenCL, which statically links
with libclang (e.g, clinfo):

$ CommandLine Error: Option ’track-memory’ registered more than
once!
$ LLVM ERROR: inconsistency in registered CommandLine options

The solution to this was specifying explicitely to the CMake infrastructure that
shared libraries should not be built:

CLANG CONF OPTS += -DBUILD SHARED LIBS=OFF

libclc

This library provides an implementation of the library requirements of the OpenCL C
programming language, as specified by the OpenCL 1.1 specification. It is designed to be
portable and extensible, as it provides generic implementations of most library require-
ments, allowing targets to override them at the granularity of individual functions, using
LLVM intrinsics for example. It currently supports AMDGCN, R600 and NVPTX targets.

There is a particular problem with libclc: when OpenCL programs call clBuildProgram

24

function11 in order to compile and link a program (generally an OpenCL kernel) from
source during execution, they require clc headers to be located in /usr/include/clc. This
is not possible because Buildroot removes /usr/include from the target as the embedded
platform is not intended to store development files, mainly because there is no compiler
installed on it. But since OpenCL works with libLLVM to do code generation, a place to
store clc headers must be found.

The file that adds the path to libclc headers is invocation.cpp, located at src/gallium/s-
tate trackers/clover/llvm, inside Mesa’s source tree:

// Add libclc generic search path

c.getHeaderSearchOpts (). AddPath(LIBCLC_INCLUDEDIR ,

clang:: frontend ::Angled ,

false , false);

// Add libclc include

c.getPreprocessorOpts (). Includes.push_back("clc/clc.h");

Listing 3: Extract from invocation.cpp

Variable LIBCLC INCLUDEDIR is defined in Mesa’s configure.ac:

LIBCLC_INCLUDEDIR=‘$PKG_CONFIG --variable=includedir libclc ‘

LIBCLC_LIBEXECDIR=‘$PKG_CONFIG --variable=libexecdir libclc ‘

Listing 4: Extract from configure.ac

Currently, header files are being copied to /usr/include/clc once the root filesys-
tem is generated, but this solution only works for testing because systems generated
with Buildroot must work directly after being built. The next step is to test if LIB-
CLC INCLUDEDIR can be overwritten by specifying another path instead of using pkg-
config.

clinfo

Clinfo is a simple command-line application that enumerates all possible (known) prop-
erties of the OpenCL platform and devices available on the system. It tries to output all
possible information, including those provided by platform-specific extensions.

This application is built with a simple Makefile, so when creating the package for Build-
root it was sufficient to call the generic-package infrastructure. The main purposes of it
are:

• Verifying that the OpenCL environment is set up correctly. If clinfo cannot find
any platform or devices (or fails to load the OpenCL dispatcher library), chances
are high no other OpenCL application will run.

• Verifying that the OpenCL development environment is set up correctly: if clinfo
fails to build, chances are high that no other OpenCL application will build.

• Reporting the actual properties of the available devices.

Once installed on the target, clinfo successfully found Clover and the devices available to
work with, providing the following output:

11https://www.khronos.org/registry/OpenCL/sdk/2.0/docs/man/xhtml/clBuildProgram.html
25

Number of platforms 1

Platform Name Clover

Platform Vendor Mesa

Platform Version OpenCL 1.1 Mesa 17.3.7

Platform Profile FULL_PROFILE

Platform Extensions cl_khr_icd

Platform Extensions function suffix MESA

Platform Name Clover

Number of devices 2

Device Name AMD SUMO (DRM 2.50.0 / 4.14.0 , LLVM 5.0.1)

Device Vendor AMD

Device Vend 0x1002

Device Version OpenCL 1.1 Mesa 17.3.7

Driver Version 17.3.7

Device OpenCL C Version OpenCL C 1.1

Device Type GPU

Device Profile FULL_PROFILE

Device Available Yes

Compiler Available Yes

Max compute units 1

Max clock frequency 0MHz

Max work item dimensions 3

Max work item sizes 256 x256x256

Max work group size 256

Preferred work group size multiple 64

Listing 5: Output of clinfo

Piglit

Piglit is a collection of automated tests for OpenGL and OpenCL implementations. The
goal of this project is to help improving the quality of open source OpenGL and OpenCL
drivers by providing developers with a simple means to perform regression tests.

Once Clover was installed on the target system, it was decided to run Piglit in order
to verify Mesa’s OpenCL implementation conformance, taking the packaging for Build-
root from Romain Naour’s series 12:

• [PATCH v2 1/3] package/python-numpy: add host variant for piglit

• [PATCH v2 2/3] package/waffle: new package

• [PATCH v2 3/3] package/piglit: new package

To run the OpenCL test suite, the following command must be executed:

piglit run tests/cl results/cl

The results are written in JSON format, and can be converted to HTML by running:

piglit summary html --overwrite summary/cl results/cl

12http://lists.busybox.net/pipermail/buildroot/2018-February/213601.html

26

Figure 9: OpenCL Test Suite results in HTML

The results of the OpenCL test suite were the following ones:

Table 6: Piglit OpenCL Test Suite on AMD SUMO + AMD CAICOS

Total Skip Pass Fail Crash
704 94 541 60 9

Most of the tests that failed can be classified in the following categories:

• Program build with optimization options for OpenCL C 1.0/1.1+

• Global atomic operations (add, and, or, max, etc.) using a return variable

• Floating point multiply-accumulate operations

• Some builtin shuffle operations

• Global memory

• Image read/write 2D

• Tail calls

• Vector load

Some failures are due to missing hardware support for particular operations, so it would
be useful to run Piglit with a more recent GPU using RadeonSI Gallium driver in order to
compare the results. It would also be interesting to test with both GPUs which packages
can benefit from OpenCL support using Clover.

27

PATCH v4

The PATCH v4 series13 sent to the Buildroot mailing list on the 29th March contains the
following 11 commits:

• [PATCH v4 1/11] package/llvm: new host package

• [PATCH v4 2/11] package/llvm: enable target variant

• [PATCH v4 3/11] package/llvm: enable AMDGPU

• [PATCH v4 4/11] package/mesa3d: enable llvm support

• [PATCH v4 5/11] package/llvm: enable ARM

• [PATCH v4 6/11] package/llvm: enable AArch64

• [PATCH v4 7/11] package/clang: new host package

• [PATCH v4 8/11] package/clang: enable target variant

• [PATCH v4 9/11] package/libclc: new package

• [PATCH v4 10/11] package/mesa3d: enable OpenCL support

• [PATCH v4 11/11] package/clinfo: new package

This series presents some improvements of the patches sent in the previous version and
adds the necessary packages to enable OpenCL support for AMD GPUs: Clang and libclc.
Clinfo package is also included in this series as it is a means to check whether Clover is
correctly set up.

13http://lists.busybox.net/pipermail/buildroot/2018-March/216772.html
28

Update - 13 April 2018

A Buildroot hackathon gathering the core developers of the project took place during the
March 31-April 2 weekend in Paris. After an extensive review of the v4 series by Romain
Naour and Thomas Petazzoni, the following feedback was received:

• There is no need to have a visible Config.in.host option for host-llvm, as it is merely
needed as a build dependency of the target llvm.

• Activate CCACHE, considering that Buildroot has CCACHE support and it is useful
considering the size of LLVM.

• LLVM needs a toolchain with thread and C++ support.

• Some options are already passed by the CMake package infrastructure of Buildroot,
so they are not necessary in llvm.mk, such as CMAKE INSTALL PREFIX and -G
”Unix Makefiles”.

• Manage LLVM TARGETS TO BUILD in a more extensible way to add more back-
ends.

• Support for ARM and AArch64 architectures should go directly in the first patch
of the series.

• Clang binaries must be removed from the target, as there are no development files
(headers) and other build tools.

Taking into account all these considerations, the next version of the series was prepared.

PATCH v5

The PATCH v5 series14 sent to the Buildroot mailing list on the 4th April contains the
following 7 commits:

• [PATCH v5 1/7] package/llvm: new package

• [PATCH v5 2/7] package/llvm: enable AMDGPU

• [PATCH v5 3/7] package/mesa3d: enable llvm support

• [PATCH v5 4/7] package/clang: new package

• [PATCH v5 5/7] package/libclc: new package

• [PATCH v5 6/7] package/mesa3d: enable OpenCL support

• [PATCH v5 7/7] package/clinfo: new package

14http://lists.busybox.net/pipermail/buildroot/2018-April/218023.html
29

Achievements

LLVM package15 and LLVM support for Mesa 3D16 were commited to Buildroot’s master
branch on the 4th April.

Bug fixing

Thanks to Buildroot autobuilders17 it was possible to detect some bugs that were not found
during development. These autobuilders are machines that select a target architecture, a
toolchain, some packages randomly and try to build the configuration. There is a daily
report containing the results of the autobuilders that shows which packages failed to build
for a particular configuration. It is also possible to analyze the build log and the .config
file so that bugs can be quickly corrected.

GCC Bug 64735

Autobuild:

http://autobuild.buildroot.net/results/ada497f6a8d20fa1a9adb2b17a138d7b726a6cdc/

Extract from build-end.log:

output/build/llvm -5.0.1/ lib/Support/ThreadPool.cpp :14:0:

output/build/llvm -5.0.1/ include/llvm/Support/ThreadPool.h: In member function

’std:: shared_future <void > llvm:: ThreadPool :: async(Function&&, Args&& ...) ’:

output/build/llvm -5.0.1/ include/llvm/Support/ThreadPool.h:54:75: error:

return type ’class std:: shared_future <void >’ is incomplete inline

std:: shared_future <void > async(Function &&F, Args &&... ArgList)

Fix (Thomas Petazzoni):

This autotest was targeting an ARM926EJ-S processor (ARMv5 architecture). LLVM
uses std::shared future, which until gcc 7.x is not available on architectures that do not
provide lock-free atomics: https://gcc.gnu.org/bugzilla/show bug.cgi?id=64735. Build-
root already has a BR2 TOOLCHAIN HAS GCC BUG 64735 option to handle such a
case, so this new dependency must be added to LLVM. It will make sure LLVM does not
get built on ARMv5 platforms using a GCC older than 7.x.

Commit: http://lists.busybox.net/pipermail/buildroot/2018-April/218267.html

Shared libraries

Autobuild:

http://autobuild.buildroot.net/results/301c454c6eab802405a268f4713a574d1c366892/

Extract from build-end.log:

Linking CXX shared library ../../ lib/libLTO.so

arm -buildroot -linux -musleabihf/bin/ld: attempted static link of dynamic object

‘../../ lib/libLLVM -5.0.so’ collect2: error: ld returned 1 exit status

15http://lists.busybox.net/pipermail/buildroot/2018-April/218058.html
16http://lists.busybox.net/pipermail/buildroot/2018-April/218060.html
17http://autobuild.buildroot.org/

30

Fix:

Buildroot provides an option to build and use only static libraries on the target sys-
tem. LLVM will not work in this case as it generates shared libraries. Because of this,
the package should not be available if BR2 STATIC LIBS is set.

Commit: http://lists.busybox.net/pipermail/buildroot/2018-April/218550.html

BR2 USE WCHAR

Autobuild:

This error was detected locally.

Extract from log:

output/build/llvm -5.0.1/ include/llvm/Support/ConvertUTF.h:203:53:

error: s t d :: w s t r i n g has not been declared

bool ConvertUTF8toWide(llvm:: StringRef Source , std:: wstring &Result);

Fix:

LLVM uses std::wstring, so a toolchain with wchar support is necessary.

Commit: http://lists.busybox.net/pipermail/buildroot/2018-April/218549.html

Gallium R600 with LLVM needs libelf

Autobuild:

http://autobuild.buildroot.org/results/8845ff0f28d3273ebe884126b85cd7c4a905d81b/

Extract from log:

checking for EXPAT ... yes

checking for RADEON ... yes

configure: error: r600 requires libelf when using llvm

Fix:

Gallium R600 driver needs libelf when Mesa 3D is built with LLVM support. Because of
this, the toolchain must use either uClibc or glibc, as musl is not currently compatible
with elfutils.

Commit: http://lists.busybox.net/pipermail/buildroot/2018-April/218985.html

31

llvm-config’s RPATH

Autobuild:

http://autobuild.buildroot.net/results/b81c12d529c66a028e2297ea5ce1d6930324fa69/

Extract from log:

checking for llvm -config ...

output/host/x86_64 -buildroot -linux -uclibc/sysroot/usr/bin/llvm -config

/output/host/x86_64 -buildroot -linux -uclibc/sysroot/usr/bin/llvm -config:

error while loading shared libraries: libc.so.0: cannot open shared object

file: No such file or directory

Fix:

In this case, Mesa 3D failed to build because it could not correctly execute llvm-config.
The problem is the following: llvm-config (host version installed in STAGING DIR) is
not being able to link correctly with the libc of the host system. This happens in the
following scenario: target architecture = host architecture (normally x86 64) and target’s
libc different from host’s libc (normally glibc).

As the RPATH of llvm-config specifies $ORIGIN/../lib (seen using readelf -d llvm-config)
and the binary is located in STAGING DIR/usr/bin, it tries to link with the libc of the
target, resuting in the error displayed above.

It was found that function llvm setup rpath in AddLLVM.cmake sets this RPATH,
but it just returns in case CMAKE INSTALL RPATH is defined. So the final solution was
passing HOST LLVM CONF OPTS += -DCMAKE INSTALL RPATH=”$(HOST DIR)/lib”
in llvm.mk, so that LLVM binaries compiled for the host always link with host’s libraries.

Commit: http://lists.busybox.net/pipermail/buildroot/2018-April/218938.html

Preparation of the new series

After having fixed the bugs found by the autobuilders, the OpenCL series was retaken,
adding the following improvements:

• In order to cross-compile Clang, now llvm-tblgen from the host is used. llvm-tblgen
is no longer copied to STAGING DIR/usr/bin.

• libclc headers are now installed to /usr/local/include by using the –includedir option
in libclc.mk. This directory is not removed by Buildroot when generating the target
root filesystem.

• Some missing dependencies were propagated.

32

PATCH v6

The PATCH v6 series18 sent to the Buildroot mailing list on the 11th April contains the
following 4 commits:

• [PATCH v6 1/4] package/clang: new package

• [PATCH v6 2/4] package/libclc: new package

• [PATCH v6 3/4] package/mesa3d: enable OpenCL support

• [PATCH v6 4/4] package/clinfo: new package

18http://lists.busybox.net/pipermail/buildroot/2018-April/218849.html
33

Update - 23 April 2018

OpenCL for Broadcom Videocore IV

The next goal was adding OpenCL support for the Broadcom Videocore IV GPU in
Buildroot. This is an interesting feature considering that this GPU is embedded in all
Raspberry Pi models.

Videocore IV architecture

The VC4 has multiple instances of a special purpose floating-point shader processor, called
a Quad Processor (QPU). The QPU is a 16-way SIMD processor, where each processor
has two vector floating point ALUs which carry out multiply and non-multiply operations
in parallel with single instruction cycle latency. Internally the QPU is a 4-way SIMD
processor multiplexed 4x over four cycles

Figure 10: QPU data model

QPU is SIMD architecture (Single Instruction, Multiple Data), this means that one
instruction operates on a vector of elements. When looking from the programmer’s point
of view, it processes a vector of 16 elements each 32-bits long. If physical structure is
taken into account, a QPU processes only a 4-element vector (quad). By repeating the
instruction 4 times for consecutive quads in a 16-element vector, it provides a virtual
SIMD-16.

QPUs are organized into groups of up to four, termed slices, which share certain common
resources: each slice shares an instruction cache, a Special Function Unit (for recip/recip-
sqrt/log/exp functions), one or two Texture and Memory lookup units and Interpolation
units. As the Videocore IV has 3 slices of 4 QPUs each one, it provides 12 QPUs and
3 SFUs, which makes this GPU an interesting option for solving problems that present
data level parallelism. Broadcom claims a computational power of 24 GFLOPs, which
comes out from the following equation:

250 MHz (Clock Rate) * 4-Way SIMD * 2 Asymmetric ALUs * 12 QPUs = 24 GFLOPs

34

Figure 11: Simplified architecture of the Videocore IV

VC4CL

There is an open source project called VC4CL19 which provides an implementation that
supports the EMBEDDED PROFILE (trimmed version of the default FULL PROFILE)
of the OpenCL 1.2 standard for the VideoCore IV GPU. This implementation consists of:

• The VC4CL OpenCL runtime library, running on the CPU to compile, run and
interact with OpenCL kernels.

• The VC4C compiler, converting OpenCL kernels into machine code. This compiler
also provides an implementation of the OpenCL built-in functions.

• The VC4CLStdLib, the platform-specific implementation of the OpenCL C standard
library, it is linked with the kernel via VC4C.

The cl khr icd extension is supported to allow VC4CL to be found by an installable
client driver loader (ICD). As explained before, it allows VC4CL to be used in parallel
with other OpenCL implementations.

Not supported features:

• 64-bit data-types (long and double via cl khr fp64) are unsupported, since the
Videocore IV GPU only provides 32-bit instructions.

• The cl khr fp16 half floating-point type is also not supported.

• Images (WIP).

• Any application which requires a work-group with more than 12 work-items.

• Using VC4CL in combination with other applications using the VideoCore IV GPU
(e.g. the VC4 Mesa driver) is untested and can cause issues on both sides.

19https://github.com/doe300/VC4CL/wiki
35

VC4CL package for Buildroot

In order to install VC4CL, VC4CLStdLib and VC4C are needed. As these projects are
thought to be installed natively on top of a Raspbian distribution, some changes were
made to cross-compile them under the Buildroot environment.

When instaling VC4CLStdLib, it was necessary to change the location of its header files
to /usr/local/include, as they are required on runtime by the VC4C compiler and, as
explained before, Buildroot removes the /usr/include directory from the target filesystem.

One particularity of this implementation is that it calls Clang binaries in order to compile
OpenCL kernels on the target instead of linking with libclang, as most OpenCL imple-
mentations do. Even if the package was tested and working, this fact prevents this patch
series from being sent to the Buildroot mailing list, as the mantainers do not allow a
compiler to be installed on the target.

The VC4C package has the same dependencies as Clang, but also needs VC4CLStdLib
and Raspberry Pi Userland, the latter providing EGL and KHR headers. Regarding
VC4C’s Makefile, two hooks were added: one to copy Clang binaries to /usr/bin (Clang’s
Makefile removes them from the target) and another one to install a precompiled header
(VC4CLStdLib.h.pch) that is built during VC4C’s compilation to /usr/local/include/vc4cl-
stdlib, as it is a runtime dependency of VC4CL.

VC4C gives the user the possibility of choosing among three different frontends: LLVM
IR Parser, SPIR-V Reader or LLVM Library:

Table 7: Frontends

Frontend LLVM IR Parser SPIR-V Reader LLVM Library
Input formats LLVM IR text SPIR-V text/bin LLVM IR text/bin

Speed Slow Fast Faster
Supported LLVMs Standard/SPIRV SPIRV Standard/SPIRV

Runtime Deps Clang SPIRV-LLVM Clang Clang, libLLVM
Development Deps - SPIRV-Tools LLVM headers

Configuration LLVMIR FRONTEND SPIRV FRONTEND LLVMLIB FRONTEND
Supports linking No Yes No

The LLVM Library frontend was selected, as its dependencies are already packaged in
Buildroot and this is also the suggested option by the creator of the project. It suffices to
give the path to llvm-config installed in STAGING DIR in vc4c.mk so that libLLVM.so
can be found.

It is important to remark that CMakeLists.txt of VC4C was patched because it needs to
find and execute Clang during configuration (which can only be achieved by passing the
path to host’s Clang) but needs the path to target’s Clang for runtime kernel compilation.

The last step was packaging VC4CL. This package needs ocl-icd as a dependency, so this
package was also created and VC4CL was built with ICD support, so that VC4CL.icd
containing the path to libVC4CL.so was installed to /etc/OpenCL/vendors.

36

Testing VC4CL

To verify that the OpenCL environment was correctly set up, clinfo was installed and
executed, obtaining the following output:

Number of platforms 1

Platform Name OpenCL for the Raspberry Pi VideoCore

IV GPU

Platform Vendor doe300

Platform Version OpenCL 1.2 VC4CL 0.4

Platform Profile EMBEDDED_PROFILE

Platform Extensions cl_khr_il_program cl_khr_spir

cl_altera_device_temperature

cl_altera_live_object_tracking

cl_khr_icd

cl_vc4cl_performance_counters

Platform Extensions function suffix VC4CL

Platform Name OpenCL for the Raspberry Pi VideoCore

IV GPU

Number of devices 1

Device Name VideoCore IV GPU

Device Vendor Broadcom

Device Vendor ID 0xa5c

Device Version OpenCL 1.2 VC4CL 0.4

Driver Version 0.4

Device OpenCL C Version OpenCL C 1.2

Device Type GPU

Device Profile EMBEDDED_PROFILE

Device Available Yes

Compiler Available Yes

Linker Available No

Max compute units 1

Max clock frequency 250MHz

Device Partition (core)

Max number of sub -devices 0

Supported partition types None

Max work item dimensions 3

Max work item sizes 12 x12x12

Max work group size 12

Preferred work group size multiple 1

Listing 6: Output of clinfo

Something that called the attention during the execution of clinfo was the fact that it took
much more time than expected. This application calls clCreateProgramWithSource() in
order to create a program object receiving the source code of an OpenCL kernel as input.
This step involves calling Clang, which results in a bottleneck when using a Cortex-A7
processor running at 900Mhz (Raspberry Pi 2), considering that OpenCL programs are
made to improve execution time.

/usr/bin/clang -cc1 -triple spir -unknown -unknown -O3 -ffp -contract=off

-cl-std=CL1.2 -cl -kernel -arg -info -cl -single -precision -constant

-Wno -undefined -inline -Wno -unused -parameter -Wno -unused -local -typedef

-Wno -gcc -compat -x cl -S -emit -llvm -bc -o /tmp/vc4c -DRbyiL

-include -pch /usr/local/include/vc4cl -stdlib/VC4CLStdLib.h.pch

Listing 7: Clang invocation by clCreateProgramWithSource()

Most OpenCL programs make use of this function, but compiling kernels on the target is
definitely not a viable solution. A better alternative is to compile kernels on the host and

37

use clCreateProgramWithBinary(). This function creates a program object for a context,
and loads specified binary data into the program object. For this, OpenCL kernels must
be compiled to LLVM bitcode by using host-clang:

clang -cc1 -emit -llvm -bc -o kernel_pi.bc kernel_pi.cl

Listing 8: Compiling OpenCL C to LLVM bitcode

On the other side, the program must read the corresponding bitcode file and then create
the program by calling clCreateProgramWithBinary:

FILE *fp;

char fileName [] = "./ kernel_pi.bc";

size_t binary_size;

char *binary_buf;

/* Load kernel binary */

fp = fopen(fileName , "r");

if (!fp) {

fprintf(stderr , "Could not read the kernel file: %s\n", fileName);

exit (1);

}

binary_buf = (char *) malloc(MAX_BINARY_SIZE);

binary_size = fread(binary_buf , 1, MAX_BINARY_SIZE , fp);

fclose(fp);

...

...

clGetPlatformIDs (..

clGetDeviceIDs (...

clCreateContext (...

clCreateCommandQueue (...

/* Create kernel program from the kernel binary */

program = clCreateProgramWithBinary(context , 1, &device_id ,

(const size_t *)& binary_size ,

(const unsigned char **)& binary_buf ,

&binary_status , &error);

error = clBuildProgram(program ,...

...

...

Listing 9: Example using clCreateProgramWithBinary

This approach drastically improves the performance and would be the suitable solution
when running OpenCL programs on embedded platforms. Furthermore, it does not need
major changes in the code, but compiled kernels must be shipped together with the exe-
cutable file.

In order to test some real OpenCL application, the EasyCL project was added to Buil-
droot, allowing to get an idea about what kind of functionalities work correctly. Many
tests failed with the following error:

64-bit operations are not supported by the VideoCore IV architecture ,

further compilation may fail!

The test suite was aborted when running reduce multipleworkgroups ints noscratch
because of an invalid index:

38

terminate called after throwing an instance of ’std:: out_of_range ’

The final results:

[FAILED] testscalars.test1 (75455 ms)

[OK] testintarray.main (68581 ms)

[OK] testfloatwrapper.main (71079 ms)

[OK] testfloatwrapper.singlecopytodevice (1 ms)

[OK] testfloatwrapper.doublecopytodevice (1 ms)

[OK] testqueues.main (69716 ms)

[OK] testqueues.defaultqueue (69969 ms)

[OK] testclarray.main (71562 ms)

[OK] testfloatwrapperconst.main (70102 ms)

[OK] testintwrapper.main (69920 ms)

[OK] test_scenario_te42kyfo.main (67494 ms)

[OK] testfloatarray.main (67650 ms)

[OK] testeasycl.main (68985 ms)

[OK] testeasycl.power2helper (0 ms)

[OK] testinout.main (67367 ms)

[FAILED] testlocal.uselocal (73568 ms)

[FAILED] testlocal.notUselocal (73460 ms)

[FAILED] testlocal.globalreduce (73644 ms)

[FAILED] testlocal.localreduce (193205 ms)

[FAILED] testlocal.reduceviascratch_multipleworkgroups (192997 ms)

[FAILED] testlocal.reduceviascratch_multipleworkgroups_ints (194560 ms)

Listing 10: EasyCL tests on VC4CL

It is interesting to see the results of the same test suite executed on AMD Radeon Dual
Graphics GPU (integrated HD6480G + dedicated HD7450M) using Clover platform. First
of all, the program finishes correctly, it is not aborted with ’std::out of range’ exception
as with VC4CL and the results show that most of the tests pass:

[FAILED] testscalars.test1 (1794 ms)

[OK] testintarray.main (1582 ms)

[OK] testfloatwrapper.main (1575 ms)

[OK] testfloatwrapper.singlecopytodevice (1 ms)

[OK] testfloatwrapper.doublecopytodevice (1 ms)

[OK] testqueues.main (1561 ms)

[OK] testqueues.defaultqueue (1581 ms)

[OK] testclarray.main (1564 ms)

[OK] testfloatwrapperconst.main (1568 ms)

[OK] testintwrapper.main (1563 ms)

[OK] test_scenario_te42kyfo.main (1518 ms)

[OK] testfloatarray.main (1507 ms)

[OK] testeasycl.main (1572 ms)

[OK] testeasycl.power2helper (0 ms)

[OK] testinout.main (1478 ms)

[OK] testlocal.uselocal (1742 ms)

[OK] testlocal.notUselocal (1649 ms)

[FAILED] testlocal.globalreduce (3833 ms)

[OK] testlocal.localreduce (2210 ms)

[OK] testlocal.reduceviascratch_multipleworkgroups (1708 ms)

[OK] testlocal.reduceviascratch_multipleworkgroups_ints (1793 ms)

[FAILED] testlocal.reduce_multipleworkgroups_ints_noscratch (1714 ms)

[OK] testdefines.simple (1505 ms)

[OK] testbuildlog.main (1390 ms)

[OK] testnewinstantiations.createForFirstGpu (1612 ms)

[OK] testnewinstantiations.createForIndexedGpu (1590 ms)

39

[OK] testnewinstantiations.createForIndexedDevice (3212 ms)

[OK] testnewinstantiations.createForPlatformDeviceIndexes (1590 ms)

[OK] testnewinstantiations.createForFirstGpuOtherwiseCpu (1601 ms)

[FAILED] testucharwrapper.main (1593 ms)

[OK] testkernelstore.main (1530 ms)

[OK] testkernelstore.cl_deletes (6115 ms)

[OK] testdirtywrapper.main (1610 ms)

[OK] testDeviceInfo.basic (0 ms)

[OK] testDeviceInfo.gpus (0 ms)

[OK] testLuaTemplater.basicsubstitution1 (1 ms)

[OK] testLuaTemplater.basicsubstitution1b (0 ms)

[OK] testLuaTemplater.basicsubstitution (1 ms)

[OK] testLuaTemplater.startofsection (1 ms)

[OK] testLuaTemplater.endofsection (0 ms)

[OK] testLuaTemplater.loop (1 ms)

[OK] testLuaTemplater.nestedloop (1 ms)

[OK] testLuaTemplater.foreachloop (1 ms)

[OK] testLuaTemplater.codesection (0 ms)

[OK] testLuaTemplater.codingerror (1 ms)

[OK] testLuaTemplater.include (1 ms)

[OK] testTemplatedKernel.basic (3055 ms)

[OK] testTemplatedKernel.withbuilderror (1585 ms)

[OK] testTemplatedKernel.withtemplateerror (2 ms)

[OK] testTemplatedKernel.withbuilderrorintargs (1321 ms)

[OK] testTemplatedKernel.withargserror (1544 ms)

[OK] testTemplatedKernel.basic2 (15166 ms)

[OK] testTemplatedKernel.foreach (1513 ms)

[OK] testTemplatedKernel.forrange (1531 ms)

[OK] testTemplatedKernel.forrange2 (1514 ms)

[OK] testStructs.main (1692 ms)

[OK] testprofiling.basic (6476 ms)

[OK] testprofiling.noprofiling (1503 ms)

[OK] testcopybuffer.main (1 ms)

[OK] testcopybuffer.withoffset (2 ms)

[OK] testcopybuffer.throwsifnotondevice (1 ms)

[OK] teststatefultimer.basic (1942 ms)

[OK] teststatefultimer.notiming (1872 ms)

Listing 11: EasyCL tests on Clover (AMD SUMO + AMD CAICOS)

40

Update - 14 May 2018

Achievements

Clang package20 was commited to Buildroot’s master branch on the 28th April. After
that date, two patches were sent in order to have a cleaner version of the package. As the
objective is installing only libclang.so, the first patch removes unnecessary files from the
target, more specifically the following ones:

• Binaries in:

– /usr/bin

– /usr/libexec

• Directories:

– /usr/lib/clang

– /usr/share/clang

– /usr/share/opt-viewer

– /usr/share/scan-build

– /usr/share/scan-view

• Manual

– /usr/share/man/man1/scan-build.1

The second patch serves to link libclang.so dynamically against libLLVM.so, because
at the start libclang was linking against LLVM static libraries (libLLVMOption.a, li-
bLLVMMCParser.a, libLLVMProfileData.a, etc.), producing duplicated code. As Clang
is an LLVM tool, it was necessary to set LLVM LINK LLVM DYLIB to ON in Clang’s
Makefile.

Improved OpenCL series

With respect to the v6 series, the following changes were introduced:

• libclc headers are now installed to /usr/share instead of /usr/local/include. Given
that clc headers are being installed to a non-standard location, it was necessary to
specify this path in Mesa’s configure.ac. Otherwise, pkg-config outputs the absolute
path to these headers located in STAGING DIR, which causes a runtime error when
calling clBuildProgram.

• libclc dependencies on target llvm were removed, as host-clang is the only build
dependency.

• OpenCL support for RadeonSI was added.

20http://lists.busybox.net/pipermail/buildroot/2018-April/219824.html

41

PATCH v7

The PATCH v7 series21 sent to the Buildroot mailing list on the 4th May contains the
following 3 commits:

• [PATCH v7 1/3] package/libclc: new package

• [PATCH v7 2/3] package/mesa3d: enable OpenCL support

• [PATCH v7 3/3] package/clinfo: new package

21http://lists.busybox.net/pipermail/buildroot/2018-May/220772.html
42

Update - 15 June 2018

LLVM/Clang version 5.0.2

LLVM and Clang version 5.0.2 were released on the 16th May. Both releases are API
and ABI compatible with 5.0.0 and 5.0.1 and include mitigations for CVE-2017-571522

(Spectre Variant 2) for X86 and MIPS. Due to the importance of these bufgixes, both
patches were applied to Buildroot’s master branch:

LLVM bumped to version 5.0.2:

http://lists.busybox.net/pipermail/buildroot/2018-May/221643.html

Clang bumped to version 5.0.2:

http://lists.busybox.net/pipermail/buildroot/2018-May/221642.html

Bug fixing

Fix for host-llvm when built with GCC 8

Autobuild:

http://autobuild.buildroot.net/results/824c70e982d8ec7e518cf4db058767df42db6b04

Extract from log:

output/build/host -llvm -5.0.1/ include/llvm/ExecutionEngine/

Orc/OrcRemoteTargetClient.h:722:26: error: could not convert

’((llvm::orc:: remote :: OrcRemoteTargetClient <ChannelT >*) this)->

callB <llvm::orc:: remote :: OrcRemoteTargetRPCAPI ::ReadMem >(Src , Size)’

from ’Expected <vector <unsigned char ,allocator <unsigned char >>>’

to ’Expected <vector <char ,allocator <char >>>’

return callB <ReadMem >(Src , Size);

Fix:

GCC 8.0.1 detects the type mismatch between char and unsigned char and causes the
compilation to fail. Clang and earlier versions of GCC don’t detect the issue. This bug
was already known 23 and has been fixed upstream in LLVM 6

Commit: http://lists.busybox.net/pipermail/buildroot/2018-May/221648.html

Fix host-clang binaries

Autobuild:

This error was detected locally when trying to build libclc

Extract from log:

22https://en.wikipedia.org/wiki/Spectre (security vulnerability)
23https://bugzilla.redhat.com/show bug.cgi?id=1540620

43

CommandLine Error: Option ’x86 -use -base -pointer ’ registered more than once!

LLVM ERROR: inconsistency in registered CommandLine options

Fix:

Clang binaries are tools, and given that DLLVM LINK LLVM DYLIB is set, they are
linked against libLLVM.so. The problem is that binaries are also linking against some
LLVM static libraries, which results in the error shown above. However, it is not the
same case for libclang, which is also a tool but links only against libLLVM.so. To fix
this problem, LLVM DYLIB COMPONENTS=all must be added in Clang’s Makefile so
that binaries only link against libLLVM.so and the double symbol definition is eliminated.

Commit: http://lists.busybox.net/pipermail/buildroot/2018-June/222682.html

Buildroot 2018.05

Buildroot’s stable version 2018.05 was released on the 1st June, containing both LLVM and
Clang packages: http://lists.busybox.net/pipermail/buildroot/2018-June/222697.html

44

7 Conclusions and future work

This document describes the whole process of integrating a new package to Buildroot,
detailing every necessary step to meet the requirements which allow the package to be
merged into the project. This involves finding all the correct dependencies (toolchain
properties or packages) and writing a Makefile adjusting the corresponding build options.
Thanks to the tests and reviews done by the community, it was possible to advance rapidly
and send improved patch series as soon as possible.

Currently, LLVM 5.0.2, Clang 5.0.2 and LLVM support for Mesa 3D are available in
Buildroot 2018.05. The update of these packages to version 6.0.0 has been done by an-
other contributor and will be available in the next stable release. The activity on the
mailing list shows an interest of Buildroot users and contributors in LLVM. Such is the
case of a contributor who is creating a package Chromium browser, which relies on Clang
to be built. This contribution also adds lld, the system linker from the LLVM project
that provides an alternative to GNU ld and claims to be much faster than the latter one.

Regarding future work, the most immediate goal is to get OpenCL support for AMD
GPUs merged into Buildroot. The next step will be to add more packages that rely on
LLVM/Clang and OpenCL. On the other hand, the fact of creating a toolchain based
on LLVM/Clang is still being discussed on the mailing and is a topic that requires an
agreement from the core developers of the project.

45

	Introduction
	Organization

	Smile
	Organizational structure
	Open Source School

	Buildroot
	Cross-compilation toolchain
	Packages
	Contributing to the project

	LLVM
	The project
	Internal aspects
	Frontend
	LLVM IR
	Optimizer
	Backend
	Retargetability

	Clang

	Linux graphics stack
	X Server
	The DRI/DRM infrastructure
	Mesa 3D

	LLVM/Clang integration to Buildroot
	Conclusions and future work

